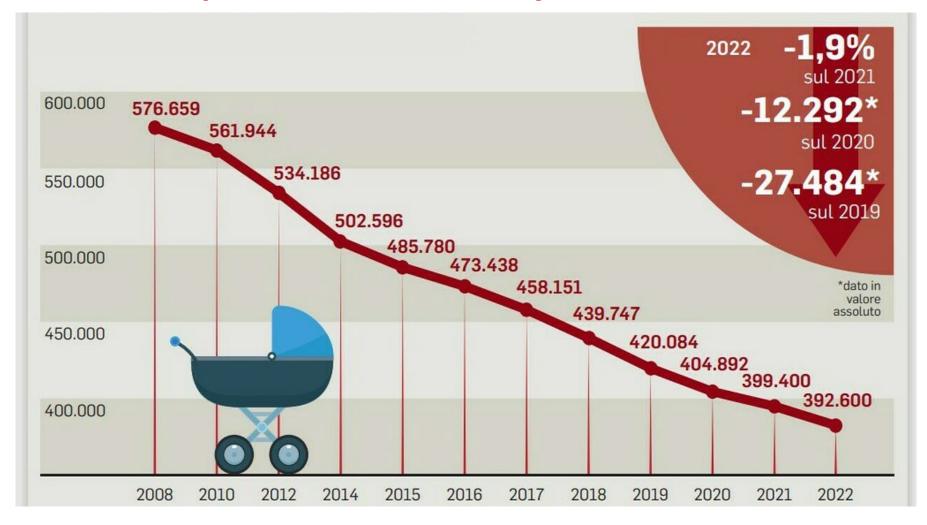


Transport accessibility and demographic vibrancy: Evidence from the high-speed railways in Italy

Mario Tartaglia⁽¹⁾, Andrea Fiduccia ⁽¹⁾, Gianluigi Cisco⁽²⁾


(1) Ferrovie dello Stato Italiane(2) Parthenope University of Naples

F

Background: Collapse of births in Italy

Source - Istat

"Did high-speed railways affect demographics in Italy?"

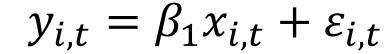
Motivations

- Aging Population: Italy ranks third globally in terms of population aging, presenting unique challenges and opportunities for social, economic, and welfare systems.
- Revolution in transportation: High-speed rail represented a revolution in transportation, transforming travel experiences and connectivity in numerous countries, including Italy.

Goals

- Investigate the Influence of High-Speed Railways on Demographic Vibrancy in Italy.
- Examine the relationship between accessibility and demographic composition in Italy.

Methodology


Data, Model and Variables

DATA

Periods: 2008 (Before HSR) – 2019 (After HSR)

Territorial Units: Catchment Areas

Model

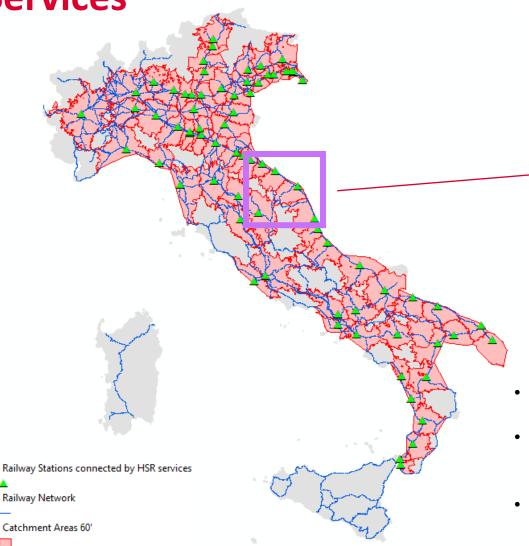
Panel Regressions Fixed Effects

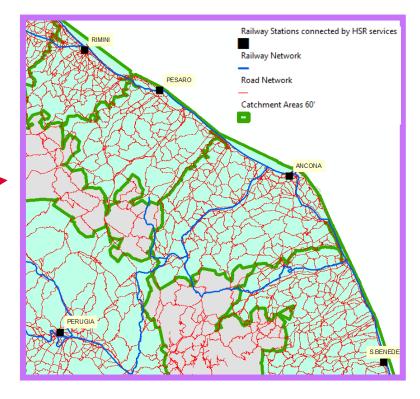
Variables

Demographic Indicators **Accessibility** index (from)

Where:

- $y_{i,t} \rightarrow Demographic Indicators$
- $x_{i,t} \rightarrow Accessibility\ Index$



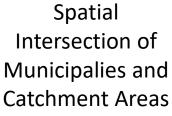


II.

Catchment Areas of Railway Stations connected by HSR

Services

- For each railway station connected by HSR services, the catchment area was calculated at 60 minutes of travel time on the road network.
- The road network graph characterizes each link with an average speed of its functional class. The travel time can be calculated from the speed and length of the link.
- Using the "service area" GIS function (Network data model), the catchment areas are determined for a given travel time (in our case 60 minutes).



Data aggregation in the Catchment Areas

ISTAT Code	Municipality	AREA (Square Km)
56025	Faleria	25,59084572
58107	Trevignano Romano	38,89711804

			AREA (Square	INTERSECTION	
ID	Catchment Area	Municipality	Km)	AREA (Square Km)	RATIO
1	ROMA: 0 - 60	Faleria	25,59084572	25,59084572	1
2	ROMA : 0 - 60	Trevignano Romano	38,89711804	22,85250498	0,587511521
3	FIUMICINO AIRPORT : 0 - 60	Trevignano Romano	38,89711804	13,75972775	0,353746715

C_i Municipalities intersecting the Catchment Area k (i = 1, ..., n)

D_i demographic data of Municipality C_i

S_i Surface of Municipality C_i

G_i Surface of the spatial intersection of Municipality C_i and Catchment Area k

Catchment

$$R_i = G_i / S_i$$

 $L_{k} = \sum_{i=1}^{n} R_i * D_i$ demographic data of Catchment Area k

Variables

Aging Index

$$AI = \frac{Citizens \ age > 65}{Citizens(0,14)}$$

Young (0-14) Citizens Index

$$YI(0,14) = \frac{Citizens (0,14)}{Tot Citizens}$$

Migrant Citizens Index

$$MI = \frac{Migrant\ Citizens}{Tot\ Citizens}$$

Young (15-34) Citizens Index

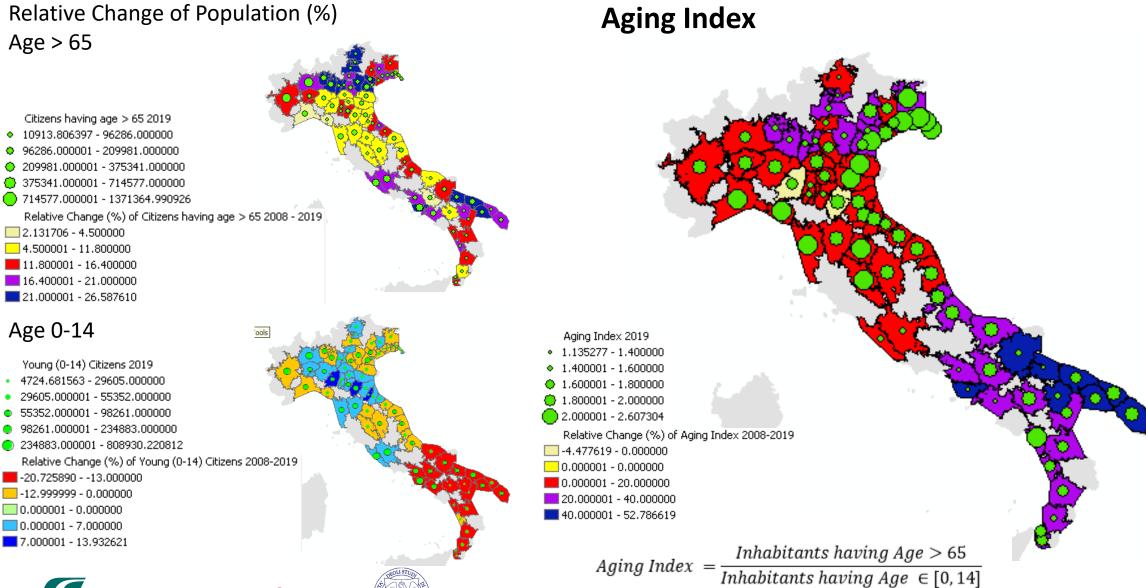
$$YI(35,65) = \frac{Citizens\ (15,35)}{Tot\ Citizens}$$

Structural Dependence Index

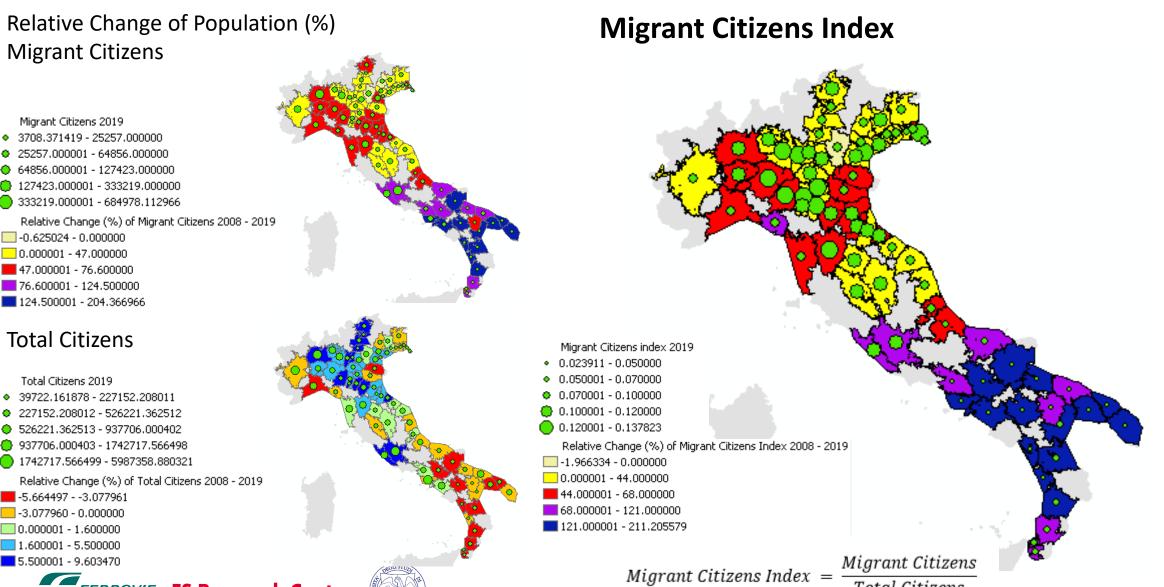
$$SDI = \frac{Tot \ Citizens \ - Working \ age}{Working \ Age \ Citizens}$$

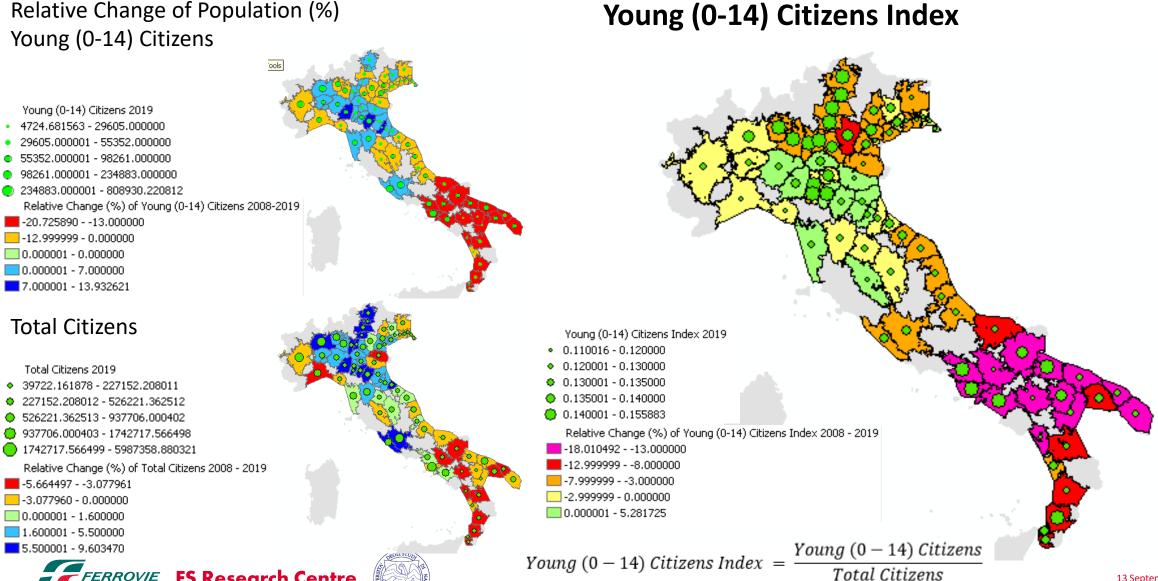
Accessibility Index

Accessibility via the **travel-time approach** (TtA_i) focuses on the performance of the transport connection in terms of supply and is the function of the **travel time** between the nodes i and j $(Tt_{i,j})$:

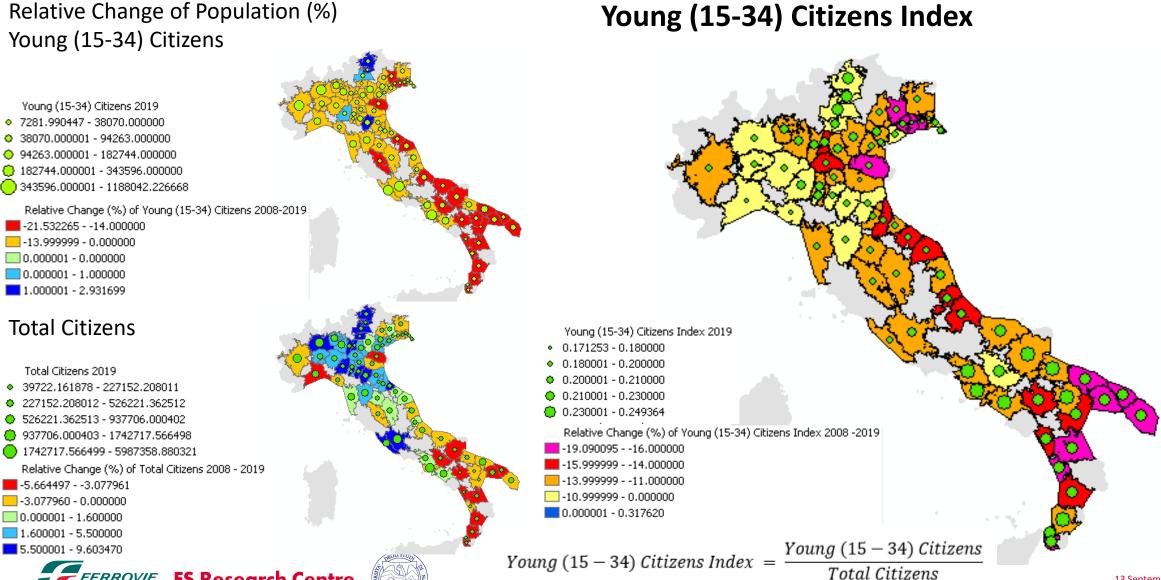

$$TtA_i = \sum_{j=1}^n \frac{1}{Tt_{i,j}}$$

15


Demographic Dynamics 2008-2019: derived indicators 1/5


s

Demographic Dynamics 2008-2019: derived indicators 2/5


5

Demographic Dynamics 2008-2019: derived indicators 5/5

s

Demographic Dynamics 2008-2019: derived indicators 4/5

s

Demographic Dynamics 2008-2019: derived indicators 5/5

Relative Change of Population (%) **Structural Dependence Index** Total Citizens in no-working age Total Citizens in no-working age 2019 15638,487960 - 89722,600000 89722.600001 - 183218.600000 183218.600001 - 365288.200000 Relative Change (%) of Total Citizens in no-working age 2008 - 2019 -6.084766 - -2.900000 -2.899999 - 0.000000 0.000001 - 7.600000 7.600001 - 10.700000 **1**0.700001 - 14.502523 Total Citizens in working age Structural Dependence Index 2019 0.487403 - 0.530000 Total Citizens in working age 2019 0.530001 - 0.560000 24083,673919 - 148938,800000 0.560001 - 0.580000 148938,800001 - 306383,400000 0.580001 - 0.610000 306383,400001 - 566225,100000 0.610001 - 0.661978 Relative Change (%) of Structural Dependence Index 2008 - 2019 566225.100001 - 1132492.700000 1132492,700001 - 3807063,668583 **-**0.685225 - 0.000000 Relative Change (%) of Total Citizens in working age 2008 - 2019 0.000001 - 8.000000 8.000001 - 10.000000 **-**8.140471 - -5.700000 - -5.699999 - -3.600000 **1**0.000001 - 14.000000 **1**4.000001 - 17.984375 -3.599999 - 0.000000 0.000001 - 3.000000 3.000001 - 7.458369 Total Citizens in no – working age $Structural\ Dependence\ Index =$ Total Citizens in working age

Results

Did high-speed rail affect demographics in Italy?

	Accessibility Index	R-squared
Aging Index	1, 127*** (0, 113)	0,579
Migrant Citizens Index	$2,919^{***}$ (0,278)	0,605
Young (0-14)Citizens Index	$-0,414^{***} \ (0,074)$	0.362
Young (15-35)Citizens Index	$-0,682^{***}$ $(0,069)$	0,489
Structural Dependence Index	$0,358^{***}$ (0,053)	0, 336

Table 1 – Regression Results

Conclusions and Future Directions

Conclusions:

- The introduction of high-speed rail services alone is unable to change the course of demographic trends.
 Demographic changes are influenced by a complex interplay of factors that extend beyond the realm of transportation infrastructure.
- The accessibility positively influences the dynamics of key demographic indicators, namely the aging index, migrant citizens index, and structural dependency index.
- Accessible locations tend to attract **weaker demographic classes**, resulting in migration patterns that affect demographic composition.

Future Directions

- Analyze the relationship between accessibility and the speed of the decline in births (second derivative)
- Alternative measures of accessibility (e.g., potential);
- Adoption of Multilevel models to capture territorial clusters.

